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The limited thermal stability of the polycyclic dione 1 can be circumvented by reacting its derivatives,
hydroxyketone 3 and diol 4 with tetrachlorothiophene dioxide (6d) to yield the mono-Diels–Alder adduct
8 and rearranged polycyclic ether 11, respectively. The structures of both new products were confirmed
by X-ray structure determination.

� 2009 Elsevier Ltd. All rights reserved.
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The synthesis of polycyclic compounds has been an important
and stimulating area of organic chemistry, providing structurally
unique molecules with unusual reactivities and novel properties,
even leading to ‘non-obtainable’ molecular frameworks.1 The
anti-tricyclo[4.2.1.12,5]deca-3,7-diene scaffold has been investi-
gated earlier in search of the elusive cyclopentadienone monomer,2

as a starting material for the synthesis of heterocyclic oxadiaman-
tane derivatives3 and in the quest for non-classical carbocations.4

We are interested in dienedione 1 as a rigid molecular skeleton
for the construction of more complex target compounds, in partic-
ular the unsubstituted indeneone dimer 2 (Fig. 1).5 The chemistry
of the title framework is challenging since not only chemo-, regio-
and stereoselectivity have to be addressed3 but, furthermore, the
close proximity of functional groups gives rise to transannular
reactions.6 Despite the many reactions published by several
groups,3,7 no Diels–Alder cycloaddition of dienedione 1 or its deriv-
atives, hydroxyketone 3 and diol 4 has been reported yet.

We prepared dienedione 1 in a three-step procedure from
cyclopentadiene8 and obtained the corresponding derivatives 3
and 4 by reduction with NaBH4 in methanol/water3c,9 and LiAlH4

in THF3c,4 in ca. 85% yield, respectively. The crystal structures of
dienedione 110 and the diol 411 were recently reported by us.

Due to the thermally induced back isomerization of 1 to its
endo-cyclopentadienone dimer 7, that is, the substrate for the pho-
tochemical preparation of dienedione 1,8 it is not surprising that
any attempt to react the latter (1) with dienes 6a–d12 (Fig. 2) at
elevated temperatures furnished only isomer 7 and traces of
unidentified material. After establishing the thermal stability of
ll rights reserved.

: +1 704 687 3151.
hydroxyketone 3 and diol 4 in refluxing toluene, we initially con-
verted diol 4 with diene 6a to a crude product that displayed a
rather complex 1H NMR spectrum. Similar observations were made
when dienes 6b12a and 6c12b were employed. Unfortunately, we
were not able to isolate any clean products from these conversions
by either chromatography (silica gel, deactivated silica gel, basic
alumina) or recrystallization.

Only upon reaction with tetrachlorothiophene dioxide (TCTD)
6d,12c an established reagent for benzannulation, did we obtain a
single product (yield: 81%) after refluxing the mixture in dry tolu-
ene for one day (Fig. 2). The 1H NMR spectrum with ten signals did
not display any olefinic signals, thus excluding a mono-Diels–Alder
adduct of type 9. The bis-DA-adduct was excluded by the number
of proton resonances and the 13C NMR data (Supplementary data).
Infrared spectra revealed no broad OH band anymore and we
concluded the formation of a transannular product, which is a race-
mic mixture of polycyclic ether 11. The postulated structure was
21

Figure 1.
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Figure 3. Crystal structure of polycyclic ether 11; Thermal ellipsoids are shown at
the 50% probability level.
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confirmed by 2D NMR spectra (Supplementary data) and by X-ray
structure determination (Fig. 3).13 The structure displays an unu-
sual framework with a bicyclo[2.1.0] subunit with the shortest
C–C single bond distances found in the cyclohexadiene ring [C3–
C4: 1.496(2) Å, C7–C8: 1.503(2) Å] and in the cyclopropane moiety
[C10–C14: 1.503(2) Å, C10–C11: 1.502(2) Å].

The observed transannular reaction has been reported for the
parent diol 4 under acid- or base-catalyzed conditions,3,6 furnish-
ing polycycle 5 with NMR chemical shifts that are in excellent
agreement with the observed pattern of the relevant substructure
in product 11 (Supplementary data). Furthermore, upon addition of
dichlorocarbene on diol 4 a small amount of the corresponding
rearranged product was found.3b We postulate the formation of
racemic ether 11 to proceed via the sequence 4?5?10d?11.
Although a control experiment (sodium bicarbonate, diol 4, tolu-
ene reflux) excluded any formation of polycycle 5, we observed
the latter by 1H NMR spectroscopy as the first reaction intermedi-
ate when dienes 6a–d were reacted with 4, probably due to traces
of acidic impurities in the reagents or formed in situ as SO2 is ex-
truded. Using a weak organic base (N,N-dimethylaniline) did not
prevent the formation of transannular product 11. Alternatively,
the latter could be obtained in a control experiment from olefin
5 by Diels–Alder reaction with TCTD (6d) and subsequent chele-
tropic extrusion of SO2 in high yield (85%). In case of dienes 6a–c
the reaction is once more initiated with a rearrangement and for-
mation of adducts 9a–c can be excluded (NMR). The subsequent
Diels–Alder products 10a–c can be observed in the 1H NMR spec-
trum of each complex reaction mixture, albeit no isolation was
possible (vide supra).

Conversely, the Diels–Alder reaction of hydroxyketone 3 was
expected to proceed without concomitant transannular reaction.
Surprisingly, no reaction occurred with an excess of dienes 6a–c
in refluxing toluene, whereas conversion with an excess of TCTD
(6d) under the same conditions furnished exclusively monoadduct
8 in 75% yield (Fig. 2). Its 1H and 13C NMR spectra (Supplementary
data) show the expected signal patterns for a compound with CS

symmetry, and the IR spectrum displays a prominent carbonyl
band. Although the spectral data do not clearly indicate the cyclo-
addition of diene 6d to the least-hindered double bond, that is, the
olefin syn to the hydroxyl group, we obtained structural proof for
the adduct 8 by X-ray structure determination (Fig. 4).14 The crys-
tal packing shows an extended network of individual molecules
forming hydrogen bonds from the carbonyl group and the hydroxy
group to neighboring molecules, respectively (Supplementary
data).

The conversion of hydroxyketone 3, or monoadduct 8, under
more forcing conditions (refluxing xylenes, excess of 6d) furnished
a reaction mixture that did not display olefinic signals in the NMR
spectra anymore. We have not been able, though, to purify any
clean products from the poorly soluble precipitate and can there-
fore only speculate on the formation of a bis-adduct. Compound



Figure 4. Crystal structure of mono-Diels–Alder adduct 8; Thermal ellipsoids are
shown at the 50% probability level.
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8 also provides a suitable substrate for oxidation of the hydroxyl
group and subsequent Diels–Alder reaction of the unreacted alkene
subunit to yield a formal twofold DA adduct of the parent dienedi-
one 1. We will report our efforts on further synthetic transforma-
tions of 8 (aromatization, protective group chemistry, oxidation)
in due course.

In conclusion, we have compared the Diels–Alder reactivity of
three highly functionalized anti-tricyclo[4.2.1.12,5]deca-3,7-diene
derivatives. We have obtained and structurally characterized two
new polycyclic frameworks, the transannular reactivity derived
ether 11 and a mono-Diels–Alder adduct 8, from diol 4 and hydrox-
yketone 3, respectively.
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